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CHAPTER 7 -- M O M E N T U M

7.1)
a-i.)  The y component of momentum before the collision is directed

upward while the y component of momentum after the collision is directed
downward.  Clearly, momentum in the y direction is not conserved through
the collision.  This is due to the fact that the force at the ceiling is large
enough to change the ball's motion over a minuscule amount of time.

a-ii.)  Even if friction was acting in the x direction during the collision,
the frictional force would be small enough and would be applied over a
small enough time to allow the momentum-change during the collision to be
negligible.  As such, momentum is conserved in the x direction through the
collision.

b.)  As the velocity-magnitude is the same just before and just after the
collision, energy was not lost and the collision must have been elastic.

c.)  The impulse absorbed by the ceiling as a consequence of the ball's
collision with it will be equal and opposite to the impulse received by the
ball from the ceiling.  The ball receives no impulse in the x direction (its
momentum in that direction is the same before as after the collision) but
does receive a change of momentum ∆ p in the y direction.  Noting that the
ball's initial momentum in the y direction (i.e., p1,y) is upward (i.e., positive)
and its final momentum is downward (i.e., negative), we can write:

∆ py = p2,y - p1,y
        = (-mv2 cos 30o) - (+mv2 cos 30o)

        = -2(  m         v2    cos 30o)
        = -2(.4 kg)(11 m/s) (.86)
        = -7.62 nt.sec.

If the ball's impulse is -7.62 nt.sec, the ceiling's impulse will be +7.62 nt.sec
in the y direction.  This makes sense as the ball's force on the ceiling will be
upward, hence the positive sign on the impulse applied to the ceiling.

d.)  The force the ceiling applies to the ball is (-3200 nt)j:

  F ∆ t = ∆ p = -7.62 j nt.sec
     ⇒      ∆ t = ∆ p/F

       = (-7.62 j nt.sec) / (-3200 j nt)
       = 2.4x10-3 sec.
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7.2)  Assuming that player #1 is the 60 kg kid and assuming the runners are
moving in the x direction:

a.)  p1,x = (60 kg)(10 m/s) = (600 kg.m/s)

  p2,x = (120 kg)(5 m/s) = (600 kg.m/s).

Both players will have the same amount of momentum.

b.)  KE1 = (1/2)m1v1
2 = .5(60 kg)(10 m/s)2 = 3000 joules

  KE2 = (1/2)m2v2
2 = .5(120 kg)(5 m/s)2 = 1500 joules.

The players have different amounts of energy.

c.)  Energy is what can hurt you.  Energy is directly proportional to the
mass of the moving object, but it is also directly proportional to the
SQUARE of the object's velocity.  The lesser amount of energy will be
imparted by the larger player moving at the slower speed.  It should be
noted that although it may be more blessed to give than receive, both
parties are going to hurt from the collision (Newton's third law--for every
action there is an EQUAL and opposite reaction).  Both players will feel the
same force.  The trick, assuming you want to play a sport predicated on the
desire to kill someone, is to make the other guy absorb his blow in a more
tender place than where you receive yours.  That is, your head impacting
his knee is not the way to go.

7.3)  The sketch shows the incoming and
outgoing ball, complete with momentum
magnitudes and momentum components.

a.)  It is easiest to do problems like
this by first writing out what's happening
in the x direction, then writing out the
momentum equation for what's happening
in the y direction.  Subtracting the balls
incoming momentum from its outgoing
momentum in both directions yields the
change of momentum in both directions.
Sooo . . .

x direction:

∆ px = pout,x  -      pin,x
       = (mv2)  - (-mv1sin θ )
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dm =    dA
       = (ky)(xdy)

       = [(.5 kg)(18 m/s) + (.5 kg)(25 m/s)(sin 30o)]
           = 15.25 kg.m/s.

y direction:

     ∆ py = pout,y  -   pin,y
       = (0)  - (-mv1cos θ )

       = (.5 kg)(25 m/s)(cos 30o)
           = 10.83 kg.m/s.

As a vector, ∆ p = (15.25i + 10.83j) kg.m/s.

b.)  The relationship between force, change of momentum, and time is
wrapped up in the impulse equation.  Specifically for the ball:

F = ∆ p/ ∆ t
    = (15.25i + 10.83j) / (.08 sec)
    = (190.6i + 135.4j) nts.

This will be equal and opposite the force on your head (N.T.L.).
Note that this is a considerable amount of force.  Its magnitude is 270

newtons, or approximately 50 pounds.  Also, note that the longer the ball is
in contact with the head, the smaller the force is.  The moral: from the point
of view of your head, it is better to play with an under-inflated ball than an
over-inflated ball.

7.4)  The sketch shows the structure
along with a differential strip of width dy a
distance y units above the x-axis.  The
differential area dA  of that strip will equal:

     dA = (length)(height)
= (x)(dy).

Writing x in terms of y can be done
using the equation of the line.  That is, if y =
-3x+4, then x = (-y+4)/3.  As such:

     dA = (x)dy
=[(-y+4)/3]dy
=[-.33y+1.33]dy.

We need the differential mass associated with the differential area dA.  We
know the area density function is σ  = ky, where k is a constant of magnitude one
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and units appropriate to the situation (we will assume that σ = y from here on as
the k term will do nothing to the final numerical solution).  That means the
differential mass dm can be written as:

    dm = σdA
       = (y)[[(-.33y+1.33)dy]
       = (-.33y2+1.33y)dy.

Using the definition of center of mass, we can write:
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Note:  Students will occasionally try to use the average value theorem from
Calculus to do a problem like this.  That approach works in some cases but not
here.  Why?  Because the average value theorem deals only with the outline of the
object--it does not take into account the fact that the mass density of the object
may not be the same everywhere (i.e., inhomogeneous).
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7.5)  The bum applies a force to the car; the car applies a force to the bum.
As long as the forces are in the direction of the car's motion, all the forces in the
direction of motion will be internal and momentum will be conserved (note that
the velocities are all relative to the stationary track).

a.)  Assuming the car is moving in
the x direction, the bum's mass is mb,
the car's mass is mc, the initial velocity
of both the bum and the car is v1 in the
+x direction.  After the bum starts
running, the final velocity of the car (relative to the ground) is vfc and the
final velocity of the bum RELATIVE
TO THE GROUND is vfc + 5 m/s:

    ∑ pinit     =           ∑ pfinal
mbv1 + mcv1 = mb(vfc + 5 m/s) + mcvfc

⇒    vfc = [mbv1 + mcv1 - mb(5)]/[mb + mc]
= [(60 kg)(15 m/s) + (800 kg)(15 m/s) - (60 kg)(5 m/s)]/[60 kg + 800 kg]
= 14.65 m/s.

(It wasn't requested, but this means that vb = vfc + 5 m/s  = 19.65 m/s).

Does this make sense?  Sure it does.  The bum pushes off the car making
himself go faster.  In doing so, he slows
the car just a bit.

b.)  With the bum running opposite
the direction of the car, the bum's final
velocity relative to the car is vfc - 5 m/s.
Following the same steps used in Part a:

∑ pinit      =        ∑ pfinal
      mbv1 + mcv1 = mb(vfc - 5 m/s) + mcvfc

⇒     vfc = [mbv1 + mcv1 + mb(5)]/[mb + mc]
= [(60 kg)(15 m/s) + (800 kg)(15 m/s) + (60 kg)(5 m/s)]/[60 kg + 800 kg]
= 15.35 m/s.

(Again, this means that vb = vfc - 5 m/s  = 10.35 m/s).
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Does this make sense?  Again, it does.  The bum pushes off the car
which makes himself go slower relative to the ground.  In doing so, he forces
the car ahead.

c.)  As the bum runs in a direction perpendicular to the car's motion
(say, in the y direction), nothing changes in the x direction--the car's
momentum stays the same.  Additionally, because there is an external force
being provided by the tracks on the train, momentum is NOT conserved in
the y direction as the bum picks up speed.

d.)  Energy before:

KE bef = (1/2) mbv1
2 + (1/2)mcv1

2

 = .5(60 kg)(15 m/s)2 +  .5(800 kg)(15 m/s)2

 = 96,750 joules.

KE aft = (1/2) mb(vfc + 5)2 + (1/2)mcvfc
2

 = .5(60 kg)(19.65 m/s)2 +  .5(800 kg)(14.65 m/s)2

 = 97,433 joules.

Where did the extra energy come from?  The bum did work, burning
chemical energy in his muscles as he exerted himself.  Some of that energy
showed itself as kinetic energy.

7.6)  A sketch of the situation is shown below:

a.)  Although there is gravity acting in the y direction, the explosion
happens so quickly (i.e., ∆ t is so small) that momentum will be "conserved
through the explosion" in all directions.  Writing out momentum
considerations in both the x and y directions, and noting that the signs in vx
and vy are unembedded, we can write:
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--In the x direction:

  ∑ pbefore,x        =           ∑ pafter,x
m(240 cos 60o) = [(2/3)m] (260) + [(1/3)m](-vx)

  ⇒     vx = 160 m/s.

Note:  This is the magnitude of the x component of the velocity.

--In the y direction:

  ∑ pbefore,y       = ∑ pafter,y
         m(240 sin 60o)   =   [(1/3)m](vy)

  ⇒    vy = 623.5 m/s.

As a vector, final velocity of the second piece is, then,

v2 = (-160i + 623.5j) m/s.

The magnitude of this vector is 643.7 m/s at an angle of 104.4o.

b.)  With m equal to 30 kg, the amount of chemical energy converted to
kinetic energy is equal to the increase of kinetic energy (i.e., ∑ KE).  This is:

∆ KE =                      KEf                          -       KEo
= [(1/2)(2/3)mv1

2 + (1/2)(1/3)mv2
2] - [(1/2)mvo

2]

= .5[.67(30 kg)(260 m/s)2 + .33(30 kg)(643.7 m/s)2 - (30 kg)(240 m/s)2]
= 1.87x106 joules.

This may be an unreasonable figure for a typical explosion, but what do you
want from an off-the-wall problem?

7.7)  This is a one-dimensional collision problem in which momentum is
conserved "through the collision."  That means:

∑ pbefore = ∑ pafter
    m8v8+ m10(0) = (m8+m10)vaft
       ⇒     vaft = m8v8/(m8 + m10)
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= (880/1880)v8
      ⇒     vaft = .468v8.

We need a second expression that has vaft in it.  We know something
about what happens to the energy in the system after the collision, so using
the modified conservation of energy approach for the time interval after the
collision up to the complete standstill point, we get:

     KE1               + ∑ U1  + ∑ Wex  = KE2 + ∑ U2

    (1/2)(m8 + m10)vaft
2 +   (0)      - fkd       =   0    +   0.

The frictional force fk is due to m10's brakes locking (m8's brakes are
assumed to remain unlocked).  N.S.L. suggests that the normal force on m10
in this case is m10g and that the frictional force is µ kN10 = µ km10g.
Substituting this into the above expression and solving for vaft yields:

(1/2)(m8 + m10)vaft
2 - fkd = 0

   ⇒    (1/2)(m8 + m10)vaft
2 = µ km10gd

vaft
 = [2µ km10gd/(m8 + m10)]1/2.

Substituting vaft = .468v8 from above into this expression yields:

vaft
 = [2µ km10gd/(m8 + m10)]1/2

      .468v8
 = [2µ km10gd/(m8 + m10)]1/2

      ⇒     v8 = [2(.6)(1000 kg)(9.8 m/s2)(1.2 m)/(1880 kg)]1/2/(.468)
⇒     v8 = 5.85 m/s.

7.8)  The man's initial momentum is in the x direction.  The woman's initial
momentum is in both the x and y direction.  During the collision, the only forces
acting are internal to the two-person system.  This
means momentum will be conserved in both the x
and y directions through the collision.
Remembering that the two individuals stick
together (it is a perfectly inelastic collision), we can
approach the problem by looking independently at
what has happened to the system's momentum in
the x direction, then y direction.  Assuming the
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final velocity of the two is vx in the x direction and vy in the y direction, we can
write:

x direction:

 ∑ pbefore,x             =            ∑ pafter,x
    pman before,x     +   pwoman before,x                  = pman after,x + pwoman after,x
mm(vman before,x) +     mw(vwoman before,x)        =     mm(vx)    +      mw(vx)

  (90 kg)(8 m/s)   + (55 kg)[(-10 m/s)(sin 30o)]  =  (90 kg)vx + (55 kg)vx
 ⇒     445 = 145vx
    ⇒     vx = 3.07 m/s.

y direction:

 ∑ pbefore,y             =            ∑ pafter,y
    pman before,y     +   pwoman before,y                  = pman after,y + pwoman after,y
mm(vman before,x) +     mw(vwoman before,x)        =     mm(vy)    +      mw(vy)

  (90 kg)(0 m/s)   + (55 kg)[(10 m/s)(cos 30o)]   =  (90 kg)vy + (55 kg)vy
 ⇒     476 = 145vy
    ⇒     vy = 3.28 m/s.

The final velocity of the two as a vector will be:

vfin = (3.07i + 3.28j) m/s.

7.9)  Momentum is conserved "through the one-dimensional firing of the gun" (see
sketch on the previous page).  As such, we can write:
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∑ pbefore,x = ∑ pafter,x
        pboth     = pgun + pball
                (mg + mb)vo = mgvg - mbvb

  (2.04 kg)(5 m/s) = (2 kg)vg - (.04 kg)vb
       ⇒     vg = (.04vb + 10.2)/2

         = .02vb + 5.1 (Equation A).

The spring is ideal so no energy is lost in the gun's firing.  Using conservation of
energy through the firing yields:

(1/2)mgvo
2 + (1/2)mbvo

2 + (1/2)kx2 = (1/2)mgvg
2 + (1/2)mbvb

2.

Dividing out the 1/2's:

 (2 kg)(5 m/s)2+ (.04 kg)(5 m/s)2+ (120 nt/m)(.15 m)2 = (2 kg)vg
2+ (.04 kg)vb

2

    ⇒    53.7 = 2vg
2 + .04vb

2.

Substituting Equation A in for vg, we get:

     53.7 = 2(.02vb + 5.1)2 + .04vb
2.

Expanding yields:

     .0408vb
2 + .408vb - 1.68 = 0.

The Quadratic Formula yields:

vb = [-.408 + [(-.408)2 - 4(.0408)(-1.68)]1/2]/[2(.0408)]
     = 3.13 m/s or -13.13 m/s.

Assuming for the moment that the solution is 3.13 m/s, Equation A will
give us the gun's velocity:

vg = .02vb + 5.1
     = .02(3.13) + 5.1
     = 5.16 m/s.
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Assuming for the moment that the solution is -13.13 m/s, Equation A
will give us the gun's velocity:

vg = .02vb + 5.1
     = .02(-13.13) + 5.1
     = 4.84 m/s.

The physical significance of a velocity calculated to be negative, given
that we have unembedded the signs on all the velocity terms (hence making
them magnitudes), is that the direction of motion has been assumed
incorrectly.  Vb was assumed to move to the left relative to the ground (i.e.,
in the negative x direction).  It is possible we could have been wrong.  That
is, if the spring had been weak, it would have ejected the ball out the back
of the gun, but the ball could have trailed the gun moving slower than the
gun but nevertheless to the right in the POSITIVE x direction.  If that had
been the case, we would have computed a negative value for vb and the
negative sign would have told us we had assumed the WRONG
DIRECTION for vb in the first place.  That is why we had to at least try the
negative velocity value for vb in Equation A.

With vb negative, the final velocity for the GUN was in the correct
direction--to the right--but with LESS VELOCITY MAGNITUDE than it
had to start with (it started with 5 m/s velocity--vg calculates to 4.84 m/s if
vb = -13.13 m/s).  Intuition tells us that this is clearly wrong.  Conclusion?
Vb = 3.13 m/s making vg = 5.16 m/s.

7.10)

a.)  To stop the cart, Tarzan's momentum must be the same as the
cart's but opposite in direction.  Momentum will be conserved through the
collision.  If the system is to be brought to absolute rest (i.e., zero momen-
tum) after the collision, we can write:

     ∑ pbefore,x                 = ∑ pafter,x
          (pj + pc)                       +   pT      = 0
       (mJ + mc)vc                    - mTvbot  = 0
       (40 kg + 190 kg) (11 m/s) -  90vbot   = 0

         ⇒      vbot = (230 kg)(11 m/s)/(90 kg)
    = 28.1 m/s.

This is the velocity at which Tarzan must move to stop Jane and the
cart dead in their tracks.
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With this velocity, we can calculate how much energy Tarzan needs at
the bottom of his arc.  Using conservation of energy, we can determine how
much of that energy will come from the freefall and how much must come
from the run.  Using that approach, we write:

KEtop       + ∑ Utop     + ∑ Wext =     KEbot        + ∑ Ubot
(1/2)mTvtop

2 + mTghtop  +   (0)      = (1/2)mTvbot
2 +   (0)

 ⇒     vtop
2 = vbot

2 - 2ghtop
        = (28.1 m/s)2 - 2(9.8 m/s2)(38 m)

      ⇒     vtop = 6.7 m/s.

b.)  The f.b.d. to the right shows tension up and weight
(i.e., mg) down.  Using N.S.L. to sum the forces in the
CENTER-SEEKING DIRECTION, we get:

  ∑ Fc :

 T - mTg = mT(v2/r)

       T = mTg + mTvbot
2/R

= (90 kg)(9.8 m/s2) + (90 kg)(28.1 m/s)2/(19 m)
= 4622 nts.

This is over five times Tarzan's weight of 882 newtons.

7.11)  Because this is essentially a collision problem, and because the only
force acting (gravitational attraction between the two bodies) is internal to the
system, momentum will be conserved in this problem.  The difficulty lies in the
fact that the planet is huge in comparison to the satellite.  That is, the momentum
of the planet will only change minusculely due to its size.  In short, using
conservation of momentum really won't work here.

There is a clever way to approach the problem, though.  Consider it from a
center of mass frame of reference.

In the free-space frame (i.e., a frame that is stationary relative to both the
planet and satellite), the motion of the center of mass and the motion of the planet
will, for all intents and purposes, be exactly the same (almost all of the mass in
the system is in the planet).  That means that in the center of mass frame, the
planet will appear stationary.  It additionally means that the satellite's incoming
velocity in that frame (i.e., in the center of mass frame) will be vs,cm = 7 km/s + 12

km/s = 19 km/s.
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AFTER

v     = v   = 0cm p

cm

v        = 19 km/ss,cm

BEFORE

v     = v   = 0cm p

cm

as energy is conserved
     v        = -19 km/ss,cm

IN CENTER OF MASS FRAMEIf the so-called collision is
elastic, energy will be conserved.
That means the satellite will leave
the collision with the same amount
of energy, hence same velocity, as it
entered with . . . FROM THE
PERSPECTIVE OF THE CENTER
OF MASS FRAME.

Relative to space (i.e., the lab
frame), the velocity of the center of
mass and the velocity of the planet
are both 12 km/s.  That means the
velocity of the satellite, relative to
space, will be:

vs = vcm + vsat.rel.to cm
     = 12 km/s + 19 km/s
     = 31 km/s.

In other words, the satellite will come into the situation moving with velocity
7 km/s and will leave after interacting with the planet with velocity 31 km/s.  This
slingshot was used by NASA to boost the speed of both Voyager spacecrafts as
they passed by Jupiter.
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